高二数学优秀教案

时间:2024-12-02 11:35:04
高二数学优秀教案

高二数学优秀教案

作为一名优秀的教育工作者,通常需要用到教案来辅助教学,教案是实施教学的主要依据,有着至关重要的作用。那么什么样的教案才是好的呢?下面是小编精心整理的高二数学优秀教案,欢迎大家借鉴与参考,希望对大家有所帮助。

高二数学优秀教案1

一、学情分析

本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。

二、考纲要求

1.会用坐标表示平面向量的加法、减法与数乘运算.

2.理解用坐标表示的平面向量共线的条件.

3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.

4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.

三、教学过程

(一)知识梳理:

1.向量坐标的`求法

(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.

(2)设A(x1,y1),B(x2,y2),则

=xxxxxxxxxxxxxxxx_

||=xxxxxxxxxxxxxx_

(二)平面向量坐标运算

1.向量加法、减法、数乘向量

设=(x1,y1),=(x2,y2),则

+=-=λ=.

2.向量平行的坐标表示

设=(x1,y1),=(x2,y2),则∥?xxxxxxxxxxxxxxxx.

(三)核心考点·习题演练

考点1.平面向量的坐标运算

例1.已知A(-2,4),B(3,-1),C(-3,-4).设(1)求3+-3;

(2)求满足=m+n的实数m,n;

练:(20xx江苏,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)

(m,n∈R),则m-n的值为

考点2平面向量共线的坐标表示

例2:平面内给定三个向量=(3,2),=(-1,2),=(4,1)

若(+k)∥(2-),求实数k的值;

练:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=(  )

思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?

方法总结:

1.向量共线的两种表示形式

设a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.

2.两向量共线的充要条件的作用

判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.

考点3平面向量数量积的坐标运算

例3“已知正方形ABCD的边长为1,点E是AB边上的动点,

则的值为;的值为.

【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

练:(20xx,安徽,13)设=(1,2),=(1,1),=+k.若⊥,则实数k的值等于(  )

【思考】两非零向量⊥的充要条件:·=0?     .

解题心得:

(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.

(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

(3)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.

考点4:平面向量模的坐标表示

例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的值为(  )

A.6B.7C.8D.9

练:(20xx,上海,12)

在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则的取值范围是?

解题心得:

求向量的模的方法:

(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;

(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..

五、课后作业(课后习题1、2题)

高二数学优秀教案2

1.预习教材,问题导入

根据以下提纲,预习教材P54~P57,回答下列问题。

(1)在教材P55的“探究”中,怎样获得样本?

提示:将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取。

(2)最常用的简单随机抽样方法有哪些?

提示:抽签法和随机数法。

(3)你认为抽签法有什么优点和缺点?

提示:抽签法的优点是简单易行,当总体中个体数不多时较为方便,缺点是当总体中个体数较多时不宜采用。

(4)用随机数法读数时可沿哪个方向读取?

提示:可以沿向左、向右、向上、向下等方向读数。

2.归纳总结,核心必记

(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

(2)最常用的简单随机抽样方法有两种——抽签法和随机数法。

(3)一般地,抽签法就是把总体中的N个个体分段,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(4)随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

(5)简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的。

[问题思考]

(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次被抽到有关吗?

提示:在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,与第几次被抽到无关。

(2)抽签法与随机数法有什么异同点?

提示:……此处隐藏1859个字……角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有的一个角(即弧度数等于这个实数的角)与它对应.

四、课堂小结

度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3radsinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

五、作业布置

作业:习题1.1A组第7,8,9题.

课后小结

度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3radsinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

课后习题

作业:习题1.1A组第7,8,9题.

板书

高二数学优秀教案6

教学要求:理解曲线交点与方程组的解的关系,掌握直线与曲线位置关系的讨论,能熟练地求曲线交点。

教学重点:熟练地求交点。

教学过程:

一、复习准备:

1.直线A x+B +C =0与直线A x+B +C =0,

平行的充要条件是 ,相交的充要条件是 ;

重合的充要条件是 ,垂直的充要条件是 。

2.知识回顾:充分条件、必要条件、充要条件。

二、讲授新课:

1.教学例题:

①出示例:求直线=x+1截曲线= x 所得线段的.中点坐标。

②由学生分析求解的思路→学生练→老师评讲

(联立方程组→消用韦达定理求x坐标→用直线方程求坐标)

③试求→订正→小结思路。→变题:求弦长

④出示例:当b为何值时,直线=x+b与曲线x + =4 分别 相交?相切? 相离?

⑤分析:三种位置关系与两曲线的交点情况有何关系?

⑥学生试求→订正→小结思路。

⑦讨论其它解法?

解二:用圆心到直线的距离求解;

解三:用数形结合法进行分析。

⑧讨论:两条曲线F (x,)=0与F (x,)=0相交的充要条件是什么?

如何判别直线Ax+B+C=0与曲线F(x,)=0的位置关系?

( 联立方程组后,一解时:相切或相交; 二解时:相交; 无解时:相离)

2.练习:

求过点(-2,- )且与抛物线= x 相切的直线方程。

三、巩固练习:

1.若两直线x+=3a,x-=a的交点在圆x + =5上,求a的值。

(答案:a=±1)

2.求直线=2x+3被曲线=x 截得的线段长。

3.课堂作业:书P72 3、4、10题。

高二数学优秀教案7

教学目的:

1.掌握常用基本不等式,并能用之证明不等式和求最值;

2.掌握含绝对值的不等式的性质;

3.会解简单的高次不等式、分式不等式、含绝对值的不等式、简单的无理不等式、指数不等式和对数不等式.学会运用数形结合、分类讨论、等价转换的思想方法分析和解决有关

教学过程:

一、复习引入:本章知识点

二、讲解范例:几类常见的问题

(一) 含参数的不等式的解法

例1解关于x的不等式 .

例2解关于x的不等式 .

例3解关于x的不等式 .

例4解关于x的不等式

例5 满足 的x的集合为A;满足 的x

的集合为B 1 若AB 求a的取值范围 2 若AB 求a的取值范围 3 若AB为仅含一个元素的集合,求a的值.

(二)函数的最值与值域

例6 求函数 的最大值,下列解法是否正确?为什么?

解一: ,

解二: 当 即 时,

例7 若 ,求 的最值。

例8 已知x , y为正实数,且 成等差数列, 成等比数列,求 的取值范围.

例9 设 且 ,求 的最大值

例10 函数 的最大值为9,最小值为1,求a,b的值。

三、作业:

1.

2. , 若 ,求a的.取值范围

3.

4.

5.当a在什么范围内方程: 有两个不同的负根

6.若方程 的两根都对于2,求实数m的范围

7.求下列函数的最值:

1

2

8.1 时求 的最小值, 的最小值

2设 ,求 的最大值

3若 , 求 的最大值

4若 且 ,求 的最小值

9.若 ,求证: 的最小值为3

10.制作一个容积为 的圆柱形容器(有底有盖),问圆柱底半径和

高各取多少时,用料最省?(不计加工时的损耗及接缝用料)

高二数学优秀教案8

一、教材分析

教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点

重点:

离散型随机变量期望的.概念及其实际含义。

难点:

离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标

[知识与技能目标]

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]

经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择

引导发现法

四、学法指导

“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

《高二数学优秀教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式